La matière formée dans les collisions hadroniques (gaz hadronique, QGP)

Ginés MARTINEZ

Journées SFP/BTPN, 21 et 22 juin 2016, Paris, France

Physics Goals

Studying properties of the strongly interacting matter at high temperature (and pressure) Heavy ion collisions allow us to create this matter in the Laboratory

QCD (a quick manual)

- Quarks (q, Q) and gluons (g)
- q,Q are coloured
- g'are coloured
- Strong coupling
- Confinement
- Asymptotic freedom
- Spöntaneous Chiral symmetry breaking at stales < A_{QCD}
- Light-q, (m<A_{QCD}) spontaneous breaking Chiral symmetry dominates: u, d, s
- Heavy-Q (m>AQCD) explicit chiral symmetry breaking dominates.
- Phase transition $T^{\sim}\Lambda_{QCD}$

$$\mathcal{L} = \sum_{q} \bar{\psi}_{q,a} (i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m_{q}\delta_{ab})\psi_{q,b} - \frac{1}{4}F^{A}_{\mu\nu}F^{A\,\mu\nu}$$

QGP in Heavy Ion Collisions

HIC Initial Conditions

- <p_T> of hadron produced in relativistic hadron collision ~700 MeV/c
- X_{bj}~ 2<p_>e[±]y/vs~ 10-2 10-6
- Collisions of a dense gluon cloud interacting with α <1
- Dense QCD is a regime of QCD that can be then studied in hadronic collisions at relativistic energies. CGC is an effective theory of this QCD-Regime

Key Questions

- What are the fundamental properties of matter at high temperature? What are the properties of the quark gluon plasma?
 - Strongly interacting matter: QCD matter. Matter interacting with the only non-abelian interaction in the Standard Model
 - Importance of QCD theory, namely Lattice QCD
- Hadronic collision dynamics (in the Bjorken regime)?
 - Initial conditions (high gluon density weakly coupled: CGC)
 - Hydrodynamic models (QGP properties)
 - Hadronisation (npQCD).
 - Heavy quarks QGP coupling (LQCD, pQCD, QGP properties)
 - QGP- high energy particle interaction (pQCD, QGP properties)
- To which extent did these properties govern the evolution of the universe?

Experimental Observables

Central Pb-Pb at 5 TeV ~2000 particle/unit of rapidity {PID, p_T, y, phi} QCD/Models are crucial in the interpretation of the observables. Due to complexity, a global and coherent scenario is a must

- SPS (1985-) sqr(s)~20 GeV My personal very brief review
 - Elliptic flow, particle ratios, jpsi suppression => Hint of a deconfined state of matter
 - Bjorken hypothesis not verified since $2R/\gamma ~1/\Lambda_{QCD}$

RHIC (2000-)

- 3.83 km
 circumference
- Two separated rings
 - 120 bunches/ring
 - 106 ns bunch crossing time
- A-A, p-A, p-p
- Maximum Beam Energy :
 - 500 GeV for p+p
 - 200A GeV for Au+Au
- Luminosity
 - Au+Au: ~ 1027 cm-2 s-1
- Mid-rapidity at 90°
- Interaction Point

Upton, Long Island, New York

About 300 peer-review papers in exp HIC (2 papers 1000+, 17 500+)

V2 reaches RHD predictions

- Central Au-Au 200 GeV, ε_{Bj} ~5-10 GeV/fm³
 Initial Temperature 230 300 MeV (following LQCD)
 Hydro describes very well the HIC evolution (p_T<~2GeV/c)

strong-QGP concept

- Success of relativistic hydrodynamics (RHD) to describes the HIC
- Study of QGP shear
 viscosity (F/A=η(u/y)),
 and namely η/s (units of
 ħ)
- From RHD $\eta_{QGP}/s^{\sim} 1/4\pi$
- Strong coupled systems η/s~ 1/4π (AdS/CFT correspondence)

Policastro et al, PRL 87 081601 (2001)

QGP behaves as an ideal
 Liquid

Why HI at the LHC?

Higgs is produced by the gluon fusion channel :;)

- Higher energy density (~x15-x30 beam energy stěp)
- Larger/Longer/Hotter QGP
- Increase of hard probe cross-sections:
 - Upsilon (but also J/psi)
 - Open beauty (but also open charm)
 Jet production (until factor 1000)

 - Electroweak boson production

LHC Heavy Ion Program

ALL LHC experiments have joined the LHC HI program:

- Run1 (2010-2013) Pb-Pb 2.76 TeV 0.1 nb⁻¹, p-Pb 5 TeV
- Runz (2015-2018) Pb-Pb 5 TeV 1 nb⁻¹, p-Pb 5 TeV, fixed target
- Run3 (2021-2024) Pb-Pb 5 TeV 10nb-1
- Run4 (2027–2030) To be discussed, light ions, fixed target, ...

Rough estimation:

0(1300) experimental physiscists devoted to the HI program. Full LHC community 0(6800)

<u>ALICE</u>: devoted to HI. Low p_T, PID, open charm, charmonia <u>CMS/ATLAS</u>: bottomonia, jets, high pT, EW probes <u>LHCb</u>: pA, Low p_T, fixed target

<u>Close to 150 peer-review papers in exp HIC (2 papers 500+, 9 250+)</u>

QGP at the LHC Run1 I

<u>Hotter</u> → x3 initial energy density 15-30 GeV/fm³ Ti ~ 300 - 400 MeV (30% larger initial temperature) <u>Longer</u> → ~ 10 fm/c until freeze-out <u>Larger</u> → double volume

QGP at the LHC Run1 II

QGP at the LHC Run1 III

(1/N) dN/dA

0.2

0.4

Strong suppression of high pT particles Increase of R_{AA} with pT Jet Physics in Heavy ions. i.e. dijet asymmetry

QGP at the LHC Run1 IV

 Υ (25) and Υ (35) are suppressed. Υ (15) partially suppressed, could be indirectly caused by the suppression of excited Υ states.

QGP at the LHC Run1 V

Recombination scenario is favoured. Deconfinement of charm quarks in the QGP

Collectiveness in pPb Run1 VI

ALICE, PLB 719 (2013) 29 Similar to PbPb: pPb 5 TeV v2, ridge, particle 1.30 ratios, HBT, ... 1.25 (also in high 1.20 1.15 multiplicity pp 4 collisions) 2 - unexpected, $\nabla_{\mathcal{O}}$ -2 M - interesting, PbPb Vs_{NN} = 2.76 TeV pPb vs_{NN} = 5.02 TeV - more 0.10 0.3 < p_ < 3.0 GeV/c; n 0 0 0 0 0 0 0 0.3 < p_ < 3.0 GeV/c; |\eta| < 2.4 experimental studies needed, 0000000000 - a theoretical 2 $\circ v_{2}\{2, |\Delta \eta| > 2\}$ 0.05 framework is v₂{4} + v₂{6} heeded. ♦ v₂{8} v₂{LYZ} CMS Preliminary 300 100 200 0 100 200 300 N^{offline} N^{offline}

HI Results from LHC Run1

- Larger initial energy density (x3 for ~15 beam energy step and 30% larger initial temperature)
- Confirmation/extension of RHIC results : elliptic flow, high pT suppression
- Jet physics in heavy ion collisions
- Upsilon suppression
- Charm deconfinement
- Collectiveness in small systems

My personal executive summary of HI LHC results Run1(2010-2013)

LHCb upgrade for run3-4

- Higher Luminosity (in pp $4 \times 10^{32} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)
 - New RO architecture and software triggering
- Higher event multiplicity
 - Larger granularity, namely of the tracking detectors

CMS and ATLAS in Run3-4

- -Higher significance (10 nb⁻¹, 50 KHz PbPb
- Strategy based on triggering on interesting events
- Upsilons
- High pT (particles, jets (b-jets) quarkonia, heavy quarks)
 New observables: photon-jet, Z-
- Jet etc ...

Fixed larget at the LHC

- CM energy similar to RHIC (72 and 115 GeV in PbPb AND pA respectively
- Accessing backward rapidities $(x_{F}<0)$
- High integrated luminosity
- Different targets
- Polarisation of the target is possible
- Two options:
 - Gas target (being tested by LHCb)
 - Beam extraction with bent crystals

Perspectives 2017-2030 I Exploiting all the possibilities at the LHC

Perspectives 2017-2030 II

Other facilities: 2030 -FAIR-CBM -NICA 2025 FAIR -RHIC Years (SI<mark>S100</mark>) NICA -SPS (Collider) 2020 - J-PARK (~20 GeV) RHIC (BES II) SPS -FCC (~100 TeV) 2015 10 Not addressed in this talk

Back-up

Initial Temperature

- Difficult
 measurement
- Virtual photons (m_{ee}<300 MeV)

PHENIX, PRL 104, 132301 (2010)

Hard probes in pPb Run1 VI

- Nothing related to collectiveness is observed in small systems, except one puzzling observation
- Noticeable decrease of the $\Psi(2S)/J/\psi$ ratio in pPb collisions
- Also observed in the upsilon family
- Resonance ratio should only depends on the guarkonia wavefunction at the origin
- It seems to be correlated with the charged particle multiplicity
- Resonance formation time $1/\Delta M < 0.3 \text{ fm/c}$
- The particle density at $\tau=1$ fm/c is large in pPb collisions at LHC energies: 8 pre-hadron fm⁻³. $\Psi(2S)$ guarkonium has a volume ~1.75 fm³

Nuclear Physics at LHC

- EM dissociation of the Pb nucleus: GDR excitation and neutron evaporation.
- Limiting factor of the LHC
 Pb beam lifetime and
 instantaneous luminosity:

ALICE, PRL109 252302 (2012)

Anti-nucleus factory

Anti-4He is the heaviest anti-nucleus ever observed Precision measurement of the nuclei and anti-nuclei mass difference (CPT test)