Importance des ressources minérales pour les procédés de production d'énergie

José Halloy Laboratoire des Énergies de Demain (LIED UMR 8236) Université Paris Diderot.

Criticality of metals and metalloids

T. E. Graedel^{a,b,1}, E. M. Harper^a, N. T. Nassar^a, Philip Nuss^a, and Barbara K. Reck^a

^aCenter for Industrial Ecology, Yale University, New Haven, CT 06511; and ^bStellenbosch Institute for Advanced Study, Stellenbosch 7602, South Africa

Challenges in Metal Recycling

Barbara K. Reck* and T. E. Graedel

Metals are infinitely recyclable in principle, but in practice, recycling is often inefficient or essentially nonexistent because of limits imposed by social behavior, product design, recycling technologies, and the thermodynamics of separation. We review these topics, distinguishing among common, specialty, and precious metals. The most beneficial actions that could improve recycling rates are increased collection rates of discarded products, improved design for recycling, and the enhanced deployment of modern recycling methodology. As a global society, we are currently far away from a closed-loop material system. Much improvement is possible, but limitations of many kinds—not all of them technological—will preclude complete closure of the materials cycle.

1 H																		2 He
3 Li	4 Be												5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	2: M	5 2 n I	26 ⁻ e	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	4; T	3 4 c F	14 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	7: R	5 5 e (76 Ds	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	104 Rf	105 Db	5 100 Sg	6 10 B)7 1 h ł	08 Is	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	(117 (Uus) 118) Uuo
* Lanthanides		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Srr	63 1 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
	** Actinides		ides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 0 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
	<1% 1-10% >10-25% >25-50% >50%																	

Fig. 1. Global estimates of end-of-life recycling rates for 60 metals and metalloids, circa 2008 [adapted from (6)].

10 AUGUST 2012 VOL 337 SCIENCE

M.K. Hubbert peak oil model (1953)

Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining

S. Northey^{a,*}, S. Mohr^b, G.M. Mudd^a, Z. Weng^a, D. Giurco^b

^a Environmental Engineering, Department of Civil Engineering, Monash University, Clayton, VIC 3168, Australia ^b Institute for Sustainable Futures, University of Technology, Sydney, Ultimo, NSW 2007, Australia

Resources, Conservation and Recycling 83 (2014) 190–201

Fig. 7. Global Cu production by countries and regions as modelled by GeRS-DeMo in dynamic demand mode.

	Pic	Croûte + Océans	Douce	Réserve	Ressource	Quantité terrestre	Quantité marine
Métal	(année)	(année)	(année)	(t)	(t)	(t)	(t)
Acier	2070 ± 37	2541	2031	8,30E+10	2,30E+11	1,07E+18	2,74E+09
Aluminium	2070 ± 18	2456	2060		1,63E+010	1,56E+18	2,74E+09
Antimoine	2022 ± 10	2239	2021	1,50E+006	5,00E+006	3,80E+12	3,29E+08
Argent	2021 ± 11	2204	2029	5,30E+005	7,80E+005	1,43E+12	5,48E+07
Arsenic	2062 ± 48	3429	_	9,20E+005	1,10E+007	3,42E+13	5,07E+09
Bore	2052 ± 33	2264		1,10E+09	_	1,90E+13	6,08E+12
Cadmium	2002 ± 3	2305		6,90E+005	5,70E+006	2,85E+12	1,51E+08
Chrome	2117 ± 26	2369	2030	5,10E+08	1,20E+10	1,94E+15	4,11E+08
Cobalt	2061 ± 19	2377	2048	7,10E+006	2,50E+007	4,75E+14	2,74E+07
Cuivre	2048 ± 4	2389	2037	7,90E+008	2,10E+009	1,14E+15	3,43E+08
Étain	2024 ± 5	2434	2029	4,80E+06	1,17E+07	4,37E+13	5,48E+06
Gallium	2040 ± 29	2249	_	_	5,00E+004	3,61E+14	4,11E+07
Germanium	2113 ± 17	2464	_	1,19E+005	4,40E+005	2,85E+13	6,85E+07
Indium	2043 ± 26	2283	_	2,30E+004	9,50E+004	4,75E+12	2,74E+10
Lithium	2083 ± 31	2316	2027	1,60E+007	5,30E+007	3,80E+14	2,47E+11
Manganèse	2083 ± 16	2385	2037	6,80E+008	9,00E+009	1,81E+16	2,74E+08
Molybdène	2044 ± 13	2345	2037	1,70E+07	2,54E+07	2,28E+13	1,37E+10
Nickel	2032 ± 9	2338	2033	7,40E+07	1,30E+08	1,60E+15	7,67E+08
Niobium	2033 ± 22	2288	2050	4,30E+006	_	3,80E+14	1,37E+07
Or	2020 ± 7	2301	2027	5,40E+004	1,00E+005	7,60E+10	5,48E+06
Phosphate	2101 ± 6	2237	_	7,00E+010	3,00E+011	2,00E+16	8,22E+10
Platine	2069 ± 42	2549	2067	6,90E+004	1,00E+005	9,50E+10	0,00E+00
Plomb	2092 ± 8	2438	2027	8,80E+007	2,00E+009	2,66E+14	4,11E+07
Selenium	2017 ± 8	2368	_	1,00E+005	_	9,50E+11	2,74E+08
Tantale	2039 ± 24	2423	_	1,10E+005	_	3,80E+13	2,74E+06
Tellure	2108 ± 40	_	_	3,10E+004	_	1,90E+10	_
Terres Rares	2054 ± 30	2399	_	1,20E+008		_	_
Vanadium	2113 ± 30	2629	_	2,00E+07	6,30E+07	2,28E+15	3,43E+09
Zinc	2057 ± 7	2473	2026	2,30E+008	1,90E+009	1,33E+15	6,71E+09
Zirconium	2024 ± 16	2384	_	7,40E+007	_	3,14E+15	4,11E+07

Cuivre

Lithium

Concentration en Cu dans les minerais diminue

Ce qui augmente la consommation énergétique du minage

Consommation d'énergie pour extraire le cuivre

La civilisation des lingots construit la rareté des métaux

Study on Criticial Raw Materials at the EU Level, Fraunhofer, 2013

Mineraux & énergie: cercle vicieux

Minéraux moins concentrés

•••	Lead	 Silver		Tantalum	-	Rare Earths
	Copper	 Gold	-	Aluminium		Niobium
	Zinc	 Germanium	***	Gallium		Platinum
	Antimony	 Selenium	-	Indium	-	Lithium

Extraction requiert plus d'énergie

Energie moins accessible

Plus de nouveaux matériaux nécessaires

